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Abstract
We study the correlations of tunneling currents through an interacting quantum dots (QDs)
system composed of a top single QD and a bottom qubit with purely capacitive coupling within
a quantum master approach. We find that the super-Poissonian current noise of the qubit near
resonance, which is a signature of coherent tunneling within the transport qubit for
asymmetrical contact couplings, is strongly dependent on non-equilibrium transport through the
top QD with different coupling configurations. For pure-dephasing coupling, such a
super-Poissonian feature is asymmetrically washed out by increasing coupling strength showing
obvious qubit level position dependence with finite bias and temperature, while for orthogonal
coupling we can almost symmetrically lower the double peak to a double minimum by
increasing coupling strength or adjusting the ratio of the top QD contact couplings in the large
bias limit, indicating the transition from coherent tunneling to sequential tunneling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Current fluctuations in mesoscopic systems provide much
information about electron correlations not available by
average current measurements [1, 2]. This has led to intensive
experimental [3–8] and theoretical [9–18] studies on the
current noise and even higher moment of the current correlator
in a variety of open quantum systems, revealing the interplay
between Fermi statistics, coherence and Coulomb interaction,
which is crucial in solid state quantum information processing.

One such system is quantum dots in a Coulomb blockade
regime with multi-terminals, especially involving two or more
separate QDs interacting via long range Coulomb forces.
Electron transport through one terminal is correlated with
transfer events in another terminal nearby. The corresponding
negative or positive correlations are accessed by shot noise and
cross-correlation measurements, indicating the role of various
dissipation mechanisms. However, large adjustable capacitive

1 Author to whom any correspondence should be addressed.

coupling strength comparative to other system parameters,
e.g. intra or interdot charge energy in one conductor, is the
key in such experiments. Recently, several groups addressed
this problem in different QD configurations [19–21], where
a floating metallic top gate provides strong purely capacitive
coupling with high controllability. This makes it possible
to study two-electron correlation such as non-equilibrium
electron transport effects on currents through other dots, two
qubit operation in semiconductor QDs and current cross-
correlation between two parallel QDs in a controllable way.

In this work, we study the non-equilibrium environment
effect on electron statistics of a qubit current. We present a
counting statistics formulism based on a Markovian quantum
master equation (QME) with lowest order perturbation in
contact tunnelings following the line of [25–30]. In this
approach, all Coulomb interactions in the subsystem, a
transport qubit capacitively coupling to a single dot, are
treated nonperturbatively within a many-particle basis. As a
signature of coherent tunneling, the super-Poissonian current
noise of the qubit in the vicinity of resonance [6, 23, 24] is
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strongly affected by electron transport through the top QD via
capacitive coupling. For pure-dephasing coupling, the double
peak feature is asymmetrically washed out related to qubit
level positions with finite bias and temperature; for orthogonal
coupling, because of the same energy absorption and emission
rate due to charge fluctuation of the top QD, we can almost
symmetrically lower the double peak to a double minimum by
increasing the coupling strength or adjusting the relative value
of the two top QD tunneling rates.

2. Physical model and counting statistics formulation

We consider the system without a spin degree of freedom
for simplicity as sketched in figure 1, which consists of an
electrically isolated top single QD and bottom qubit, attached
to source and drain leads respectively. Electrons flowing from
the bottom source to the bottom drain through the qubit are
affected by the top current via long range Coulomb interaction.

This model is described by the Hamiltonian Ĥ = Ĥb +
Ĥt + Ĥleads + Ĥtun + Ĥint. Here, the first three terms on
the right represent the bottom qubit, top single QD and lead
Hamiltonians respectively, given by

Ĥb = εblâ
†
blâbl + εbrâ

†
brâbr + (�â†

brâbl + h.c.) + Uâ†
blâblâ

†
brâbr,

(1)
Ĥt = εtâ

†
t ât, (2)

Ĥleads =
∑

α,k

εαk ĉ†
αk ĉαk (3)

where â†
i (âi) is the creation (annihilation) operator of an

electron with energy εi inside the QD i ∈ bl, br, t and ĉ†
αk(ĉαk)

is the same operator for a noninteracting electron with energy
εαk in leads α ∈ bl, br, tl, tr. � is the interdot tunneling
coupling and U is the interdot charge energy for occupying
both dots.

The Hamiltonian of tunneling coupling between leads and
dots reads

Ĥtun =
∑

k;α=br,bl

(tαk â†
α ĉαk +h.c.)+

∑

k;α=tr,tl

(tαk â†
t ĉαk +h.c.) (4)

with tα(α = br, bl, tr, tl) the tunneling amplitude, whose
influence can be fully characterized by the spectral density
�α(ε) = 2π

∑
k |tαk |2δ(ε − εk). In the wide-band limit, this

spectral density �α is independent of energy, which implies
constant tunneling amplitudes and density of states nα in leads
α.

The Coulomb interaction between top QD and bottom
qubit has the bilinear form Ĥint = g

2 n̂t · σ̂ , where g is the
coupling strength, n̂t is the charge number operator of the
top QD, and σ̂ is a bottom qubit operator. In the following,
we adopt a basis of many-particle states for the electrically
isolated QDs and set the average energy of the left and right
bottom QDs as the zero energy point of the total system. By
diagonalizing the bottom qubit and assuming large interdot
Coulomb repulsion so that double occupancy of the bottom
QDs is impossible, we get the bonding and antibonding
states with energy Eb1, Eb2 (in our setting, Eb1 = −Eb2)
and its creation (annihilation) operator 	̂

†
i (	̂i ). Thus, the

Figure 1. Sketch of three quantum dot systems: the top single QD
(labeled T) and bottom double dot (labeled L and R) with mutual
coupling � are weakly connected to four leads of Fermi energy
μα(α = tl, tr, bl, br), coupled via long range Coulomb interaction g.

operator σ̂ can be expressed as σ̂z = 	̂
†
b2	̂b2 − 	̂

†
b1	̂b1 for

pure-dephasing coupling and σ̂x = 	̂
†
b2	̂b1 + 	̂

†
b1	̂b2 for

orthogonal coupling [31, 32]. Charge number fluctuations of
the top QD induce only pure dephasing in the qubit since
σ̂z commutes with Ĥb, while orthogonal coupling σ̂x , which
is noncommutative with Ĥb, causes energy relaxation in the
qubit.

In this study, the top QD and bottom qubit constitute the
subsystem of interest, whose Hamiltonian is Ĥs = Ĥb +
Ĥt + Ĥint, and all the Coulomb interaction terms are fully
taken into account, while tunneling between dots and leads is
treated perturbatively to the lowest order. This weak tunneling
approximation referring to sequential tunneling is reasonable
when �α is much smaller than voltage bias eV or temperature
kBT [33]. By tracing out the leads degree of freedom, the
quantum master equation for the subsystem density operator
ρ̂s to the second order perturbation theory reads [33–35]

d

dt
ρ̂s(t)

= − iĽsρ̂s(t) −
∫ t

t0
dt ′ ĽtunGs(t, t ′)G leads(t, t ′)Ľtunρ̂s(t

′)(5)

where the Liouville operators are Ľs = [Ĥs, ·] and
Ľtun = [Ĥtun, ·], and propagators are defined as Gs(t, t ′) =
exp[−iĽs(t − t ′)] and G leads(t, t ′) = exp[−iĽleads(t − t ′)]. We
set e = h̄ = 1 and nα = π−1.

Since our interest is stationary state properties and only
sequential tunneling processes are considered, we can apply
the Markov approximation which means replacing ρ̂s(t ′) with
ρ̂s(t) and setting t ′ → −∞ in equation (5). In order to get a
compact form, we introduce the following left and right action
superoperators as done in [29]: 	̌(L)· = 	̂· and 	̌(R)· = ·	̂ .
Then we get

ρ̂s = M̌ ρ̂s (6)

where the generator of QME M̌ is

M̌ = −iĽs +
∑

α=bl,br,tl,tr

(−�̌α + �̌α
+ + �̌α

−). (7)

Ľs describes the isolated coherent subsystem dynamics and the
dissipation term is split into a non-diagonal part leaving the
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number of electrons inside the subsystem unchanged,

�̌α =
∑

i

(	̌
†(L)
i 	̌

(+,L)
i,α + 	̌

†(R)
i 	̌

(−,R)
i,α + h.c.) (8)

and two diagonal parts responsible for increasing or decreasing
the number of electrons in the subsystem

�̌α
+ =

∑

i

(	̌
†(L)

i 	̌
(−,R)

i,α + 	̌
(R)

i 	̌
†(−,L)

i,α ),

�̌α
− =

∑

i

(	̌
†(R)

i 	̌
(+,L)

i,α + 	̌
(L)

i 	̌
†(+,R)

i,α ).
(9)

The auxiliary annihilation operator is given by

	̌
(±)
i,α =

∑

j

T ∗
α,i Tα, j f (±)

α (Ľs)	 j (10)

where f (+)
α (Ľs) = 1− f (−)

α (Ľs) = (exp(Ľs −μα)/kBT +1)−1

is the Fermi distribution function with μα the Fermi energy of
lead α, and the tunneling matrix element Tα,i can be got in
the many-particle basis of separate top or bottom dots. Here,
we neglect the level renormalization contributions which only
change the bare Bohr frequencies of the subsystem.

In order to get full information about transport through
the subsystem, we study the probability distribution P(�n, t)
that �n electron transfers are measured during a time interval t ,
which is related to the generating function (GF) G( �χ, t) and
the cumulant generating functions (CGF) S( �χ, t) as

G( �χ, t) = e−S( �χ,t) =
∑

�n
P(�n, t)ei�n· �χ (11)

where �n is a vector with component n+
α or n−

α (the number
of electrons transferring into or out of the subsystem through
lead α) and �χ is the corresponding counting field vector. The
GF is obtained by tracing the generate operator (GO) ĝ( �χ, t)
over the subsystem degree of freedom G( �χ, t) = Trs{ĝ( �χ, t)},
while the GO satisfies the evolution equation derived from
equation (6) in the trajectory picture [25, 27]:

d

dt
ĝ( �χ, t) = W̌( �χ)ĝ( �χ, t),

W̌( �χ) = −iĽs +
∑

α=bl,br,tl,tr

(−�̌α + eiχ+
α �̌α

+ + eiχ−
α �̌α

−).
(12)

Counting begins after subsystems have reached the stationary
state, i.e. ĝ( �χ, t = 0) = gst. From the CGF
we can obtain all the (zero-frequency) cumulants Cn =
− 1

t (−i∂ �χ )n S( �χ, t)| �χ→0,t→∞, n = 1, 2 . . .. If only one certain
lead is concerned, e.g. bottom right lead with counting fields
�χ := (χ+

br = −χ, χ−
br = χ), the first three cumulants

are related to the average current, the current noise and the
skewness, which characterize the distribution, e.g. a Fano
factor F = C2/C1 bigger (smaller) than 1 means super-
(sub-)Poissonian noise. Cross-correlations can also be
obtained with multi-type counting fields.

3. Results and analyses of fluctuating environment
effects

For numerical calculation, we express all the operators in the
many-particle basis of the subsystem. A general subsystem

(a)

(b)

Figure 2. (a) Fano factor C2/C1 and current (inset) versus level
detuning ε = εbl − εbr without capacitive coupling for different
temperatures and �bl = 0.0628, �br = 0.006 28, � = 0.1, μbl = 5,
μbr = −5 (in meV); (b) effect of pure-dephasing coupling on noise
and current (inset) of the bottom qubit. kBT = 0.5 meV,
�tl = �tr = 1.57 meV and coupling strength g = 0, 5, 6, 10, 30 meV.
Other parameters are the same as in (a). The bias applied on the top
QD is large enough so that transport is unidirectional.

state is written as |i j〉 = |i〉b⊗| j〉t, with |i〉b ∈ |0〉b, |+〉b, |−〉b

denoting the empty, bonding and antibonding states of the
bottom qubit and | j〉t ∈ |0〉t, |1〉t denoting the empty and
one singly occupied states of the top QD. The subsystem
has six many body states and the density matrix in this
Liouville space is a vector with ten elements (six populations
and four coherences between |+0〉 (|+1〉) and |−0〉 (|−1〉)).
Therefore we only need to evaluate all the equations in matrix
form and the calculation of cumulants becomes an algebraic
operation [30].

As pointed out by Kießlich et al, super-Poissonian shot
noise can be used as an indicator of quantum coherent coupling
between two QDs [23]. They found that the Fano factor versus
energy level detuning ε may exhibit two symmetric peaks
close to resonance larger than unity with asymmetric contact
couplings, and this structure is asymmetrically washed out
in the large bias limit by increasing temperature because of
electron–phonon scattering. Without dissipation, however, a
similar result can also be found with finite bias by increasing
temperature as long as μr + kBT < Eb1, Eb2 < μl − kBT ,
see figure 2(a). This shows that such a super-Poissonian
feature is sensitive to temperature and the molecule level
position relative to the Fermi level of the leads. The latter
effect is enlarged in our model. Instead of an equilibrium
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Figure 3. Fano factor C2/C1 and current (bottom left inset) versus
level detuning ε = εbl − εbr for different bias configurations.
g = 20 meV and other parameters are the same as in figure 2(a). Top
right inset: sketch of tunneling processes of the bottom qubit where
solid lines symbolize two molecule levels which fluctuate by g

2
(dashed lines). The arrows represent g-sensitive tunneling processes.

phonon environment, we consider dissipation due to non-
equilibrium electron fluctuations in the top QD. Figure 2(b)
shows the corresponding Fano factor for pure-dephasing
coupling. Increasing the coupling strength g, the double peak
is asymmetrically lowered and finally shows obvious sub-
Poissonian features for ε > 0, but for ε < 0 it is still super-
Poissonian although its value is close to unity.

This super-Poisson behavior can be understood by
dynamical channel blockade [36]. Because of a strong
Coulomb blockade and asymmetric couplings (�bl > �rl), one
of the transport channels is much more efficient than the other.
As a result, once an electron occupies a state belonging to the
slow transport channel, it takes more time to tunnel-out of the
dots so that another one can tunnel into them. Thus in the time
series electrons seem to transfer in bunches. Charge fluctuation
of the top QD makes two states belonging to fast and slow
transport channels respectively in the bottom qubit sensitive
to g due to pure-dephasing coupling, which means the energy
level of each state fluctuates between two values separated by
g
2 (figure 3, top right inset). For ε > 0 with increasing g,
the g-sensitive processes strongly change the tunnel-in rate of
the slow type transport channel and the tunnel-out rate of the
fast one asymmetrically so that one cannot distinguish the two
types of transport channels, which contributes to the transition
from super-Poissonian to sub-Poissonian; however, for ε < 0,
the partition of two types of transport channels still exists,
which leads to the asymmetric weakening of the double peaks.
This effect is more obvious when there is only one type of
(slow or fast) g-sensitive process lying in the transport window.
In figure 3, we even find an enhanced super-Poissonian noise
when Eb1 − g

2 < μbr < Eb1, Eb2, Eb2 + g
2 < μbl for ε < 0

where only tunnel-out rate of the slow type is reduced.
In addition to fluctuating the levels of the qubit as pure-

dephasing coupling, orthogonal coupling induces relaxation
similar to electron–phonon scattering [22–24]. Interestingly,
we can almost symmetrically lower the double peaks to a

(a)

(b)

Figure 4. (a) Fano factor C2/C1 and current (inset) versus level
detuning ε = εbl − εbr for different orthogonal coupling strengths g.
Both the top QD and the bottom qubit are in the large bias limit.
Parameters �tl = 0.0628 meV and �tr = 1.57 meV, other parameters
are the same as in figure 2(a). (b) Fano factor versus level detuning
and the asymmetry of the top QD’s contact couplings
α = (�tr − �tl)/(�tr + �tl). Parameter �tl = 1.57 meV,
g = 0.02 meV and other parameters are the same as in (a). The black
dashed curve corresponds to Fano factor C2/C1 = 1.

double minimum by increasing the coupling strength g in the
large bias limit, indicating the crossover between coherent and
sequential tunneling regimes, see figure 4(a). This implies the
same rate of energy absorption and emission due to charge
fluctuation of the top QD taking place during transport through
the qubit, which resolves the dynamical channel blockade
symmetrically for ε > 0 and ε < 0. In contrast to pure-
dephasing coupling, the crossover between these two regimes
is also sensitive to the contact couplings of the top QD in
orthogonal coupling as shown in figure 4(b) for fixed coupling
�tl, g and temperature T . Increasing �tr, the transition of the
tunneling regime is recognized from coherent for small �tr to
sequential for �tr comparative to �tl and finally coherent again
for large �tr, which implies that the current noise of the qubit is
strongly dependent on the non-equilibrium transport conditions
of the top QD.

4. Conclusions

We have calculated the counting statistics of an interacting
quantum dots system consisting of a top QD and a bottom qubit
with capacitive coupling based on a lowest order perturbative
Markovian quantum master equation. We investigated the
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effect of a non-equilibrium environment (the top QD with
two leads) on electron transport through the bottom qubit
near resonance. By increasing the pure-dephasing coupling
strength, we find asymmetrical weakening of the double peaks,
strongly related to the qubit energy level position referring
to the Fermi level of the leads, which suggests a transition
from coherent tunneling to sequential tunneling. With proper
bias, we even find enhanced super-Poissonian noise. In
contrast, for orthogonal coupling super-Poissonian noise can
be almost symmetrically lowered to the sub-Poissonian regime
with increasing coupling strength because of the same rate
of energy absorption and emission due to charge fluctuation
of the top QD. This noise is also sensitive to the ratio of
the top QD tunneling rates for certain coupling strengths in
the large bias limit. For further theoretical study, it would
be interesting to investigate the effect of cotunneling and the
possible non-Markovian signature in our model [37] and to
investigate the effect of non-equilibrium entanglement between
two electrically separated qubits with different coupling
configurations [38]. We hope our findings may encourage
more experimental work in terms of shot noise measurements
in similar setups such as those presented in [8, 20, 21].
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